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The Reichenbachian definition of the common cause for two correlating events 
is formally generalized for the quantum case in two different ways. It is shown 
that (1) in the first quantum case, unlike in the classical case, there exists a 
common cause for any two correlating events, and (2) the common cause is not 
unique either in the classical or in both quantum cases. 

1. I N T R O D U C T I O N  

I f  there is a correlation between two events, one possible explanation 
is that the correlation stems from a common cause. Reichenbach defines this 
common cause in a probabilistic way and gives some examples for correlation 
which can be explained by a common cause (Reichenbach, 1956). In Section 
2 we present this classical definition, and show a simple example for a 
Boolean lattice in which correlation occurs between two events without a 
common cause. In Sections 3 and 4 we generalize the original definition for 
the quantum case in two different ways according to two possible definitions 
of  the conditional probability on a Hilbert lattice, and we show that in the 
first case if there is a correlation between two events, then there is a common 
cause for this correlation. From the technique of  the proof  it can be also seen 
that the common cause is not in general unique. In the second case we cannot 
claim a similar proposition regarding the existence; but we show that neither 
definition leads to a unique common cause. 
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In this paper we just concentrate on the mathematical structure of the 
Reichenbachian definition and we do not investigate the philosophical conse- 
quences of these results. In our previous paper (Hofer-Szab6, 1997a) we 
investigated the Reichenbachian definition regarding its consistency; we ana- 
lyze the philosophical meaning of the three properties of existence, unique- 
ness, and consistency of the Reichenbachian common cause together in our 
next paper (Hofer-Szab6, 1997b). 

2. THE CLASSICAL CASE 

Let (i) (1~, F, p) be a Kolmogorovian probability measure space and let 
(ii) the conditional probability of E given F be defined as usual by 

p(EIF) = p(E n F) 
p(F) 

Let A, B ~ [ l  be two correlated events, i.e., 

p(A n B) > p(A)p(B) (1) 

Reichenbach defines the common cause of  the correlation as follows: 

Definition 1. An event C is said to be the common cause of the correlation 
between A and B if the events A, B, and C satisfy the following relations: 

p(A N BIC) = p(AIC)p(BIC) (2) 

p(A n BIC) = p (AIC)p(BIC) (3) 

p(AIC) > p(AIC--') (4) 

p(BIC) > p(BIC) (5) 

We denote by p(-IC) and p(-IC) the probabilities conditioned on C and 
non-C, respectively. We wish to raise the question of whether a correlation 
is always explainable by a common cause. We answer this question by 
showing a simple Boolean lattice where there is a correlation without a 
common cause. Let the lattice be generated by two elements A and B, and 
let there be a suitable probabilistic measure on the lattice. (See Fig. 1; we 
denote the meets by "&"; the measure of the elements is given in parentheses.) 

Since 0.2 = p(A n B) > p(A)p(B) = 0.16, there is a correlation between 
A and B. But there is no element in the lattice which would satisfy (2)--(5) 
and so could be regarded as the common cause of this correlation. So Boolean 
lattices do not automatically supply a common cause for every correlation. 

It is another question whether we can extend the lattice so that we get 
a common cause for a given correlation in the lattice. If, for instance, we 
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I 

- -  - -  (0.6) (0.8) - -  (0.8) (0.8) 
A&B A&B A&B A&B 

A (~ B (0.4) (A&B)&(A&B) (0.6) (A&B)&(A&-)B (0.6) ~ (0.6) -A(~ 

A&B A&B A&B A&B 

0 
Fig. 1. A Boolean lattice without common cause. 

extend the lattice to contain all the Lebesgue-measurable sets in [0, 1], then 
we can show in a straightforward way that there exist uncountably many 
common causes of the correlation above. So the classical common cause is 
in general not unique. 

3. FIRST GENERALIZATION 

Let (i) P(H) be a Hilbert lattice and W be a pure state represented by 
the unit vector w. For the projections E and F in the lattice let (ii) the 
conditional probability of E given F in a state W be defined in the follow- 
ing way: 

pw(E /~ F) _ Tr(W(E/~ F)) 
pw(EIF) - 

pw(F) Tr(WF) 

[Now we disregard the logical and mathematical difficulties arising from this 
generalization of the Bayes rule--that, for example, pw(EIF) + p~(EJ-IF) 4= 
1. This definition can be regarded as a connecting link between the classical 
and the quantum conditional probabilities.] 

Let A, B ~ P (H) and assume a correlation between A and B in the 
state W, i.e., 

p,,(A /~ B) > pw(A)pw(B) (6) 



1976 Hofer-Szab6 

We now define the common cause of  the correlation in the quantum case: 

Definition 2. An event C is said to be the common cause of  the correlation 
between A and B if the events A, B, and C satisfy the following relations: 

pw(A A BIC) = pw(AlC)pw(BIC) (7) 

pw(A A BIC • -- pw(AlCX)pw(BIC • (8) 

pw(AIC) > pw(AlC • (9) 

pw(BIC) > pw(BIC') (10) 

Now we ask a similar question to the classical case: is there a common 
cause for every correlation? We claim that the answer is yes. 

Theorem 1. Let A and B be elements of a Hilbert lattice, and let them 
satisfy (6). Then there always exists a third event C in the lattice such that 
the events A, B, and C satisfy (7 ) (10) .  

Proof Let A and B be two correlated events in the pure state W, i.e., 
let pw(A A B) > p~(A)p~(B). Then the following three relations hold: (i) 
A A B r  w ~t A A B , ( i i i )  w 0tA, B. 

Now let {e, f ,  gi}/N= 3 be an orthonormal basis in H, so that e ~ A A B, 
a n d f  ~ {e V w}, where {e V w} is a two-dimensional subspace in H (since 
w ot A A B). (We denote by e, f . . . .  both the vectors and the projections.) 
Now we claim that for the choice C = {e V g3 V �9 .- V gN}, C satisfies 
(7)-(10). Let us see the different conditional probabilities. 

By the calculation of  the Tr-function in the conditional probabilities 
p~ (.IC) we use the basis defined above: 

p d A J C )  = 

pw(BIC) = 

Tr(W(A A C)) 
Wr(WC) 

N,N 

(e, We) + ~ aij(A, C)(g i, Wgj) 
~--- i,]=3 = 1 

N 

(e, We) + ~ (gi, Wgi) 
i=3 

Tr(W(B A C)) 

Tr(WC) 

N,N 

(e, We) + ~ bq(B, C)(gi, Wgj) 
id=3 

N 

(e, We) + ~, (gi, W g j )  
i=3 
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Tr(W(A A B A C)) 
p~(A A BIC) = 

Tr(WC) 

N,N 

(e, We) + ~ cu(A A B, C) (gi, Wgj) 
id'=3 

= = 1 N 

(e, We) + ~ (gi, Wg) 
i=3  

where au(A, C), bij(B, C), and cij(A A B, C) are coefficients depending on 
the projections in the parentheses. All the conditional probabilities equal 1, 
since for every i, j = 1 . . . .  N, the product (gi, W&) = O. 

Now let us see the C • case. Because of (iii), f cannot be an element 
of A, B, and A A B. Since e ~ A, B and A A B, i f f  were in A, B, and A A B, 
then w would also be in A, B, and A A B, which contradicts (iii). Since 
f ~ A, B and A A B, so A A C • B A C x, and A A B A C • are 0-projections. 
So the probabilities conditioned on C • are equal to 0: 

p,,(AiC• ) = p,,(A A C • = Tr(W(A A C• = 0 
p~(C • ) Tr(WC • 

p.,(BIC• ) _ pw(B A C • _ Tr(W(B A C• = 0 
p~(C • ) Tr(WC • 

p.,(A A BIC • = 
p w ( A A B A C  • = T r ( W ( A A B A C •  = 0  

p.,(C 1) Tr(WC • 

Equations (7)-(10) are satisfied by 

1 = p,,(A A BIC) = pw(AlC)pw(BIC) = 1 

0 = pw(A A BIC • = pw(AIC• • = 0 

1 = pw(AIC) > pw(AIC • = 0 

1 = pw(BIC) > pw(BIC • = 0 

So we have found a common cause C which can be regarded as the 
common cause of the correlation (6), and this was to be proven. �9 

We can see from the proof that there is no restriction on the choice of 
e in A A B. If dim(A A B) > 1, then there are uncountably many possible 
C which satisfy (7)-(10). So the common cause determined by the definition 
above is in general not unique. 
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4. SECOND G E N E R A L I Z A T I O N  

Let (i) P(H) be a Hilbert lattice and W be a pure state determined by 
the unit vector w. For the projections E and F in the lattice let (ii) the 
conditional probability of  E given F in a state W be defined in the follow- 
ing way: 

pw(EIF) - 
Tr(FWFE) 

Tr(FWF) 

The motivation of  this definition comes from the theory of measurement. 
If we carry out a measurement of  an observable represented by the projection 
F in a pure state W, then the state transforms as follows: 

FWF 
W~.  

Tr(FWF) 

It can be easily seen that the new state is pure again. We introduce the 
following notation for the new pure state: WF -- FWF/Tr(FWF). The W ~, WF 
transformation can be regarded as the 'renormalized projection' of  the state 
W onto the subspace RanF. This rule is due to Liaders (1951; Bub, 1979). 
Using the above notation, we are able to define the common cause in terms 
of this new conditional probability: 

Let A, B ~ P (H) and let there be a correlation between A and B in the 
state W, i.e., 

p~(A /~ B) > p~(A)p~(B) (11) 

Definition 3. An event C is said to be the common cause of  the correlation 
between A and B if the events A, B, and C satisfy the following relations: 

Tr(Wc(A A B)) = Tr(WcA) Tr(WcB) (12) 

Tr(Wc• A B)) = Tr(Wc• Tr(WclB) (13) 

Tr(WcA) > Tr(Wc• (14) 

Tr(WcB) > Tr(WcIB) (15) 

In this second quantum case we cannot prove the general existence of 
a common cause for all correlating events, but one can easily see also in this 
case how the requirement for a correlation restricts the possible arrangements 
of  the system, and how these arrangements favor the presence of a com- 
mon cause. 

Now we show that not even this definition leads to a unique common 
cause. Let P(H3) be the projection lattice of the three-dimensional real Hilbert 
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space/-/3 with the basis {x, y, z} (see Fig. 2). Let RanA be the line x and 
RanB be the plane xy. Let w be in the plane xz meeting with x at an angle 
13, where 13 E (0, -tr/2). 

Since 0 < pw(A/X B) = pw(A) = pw(B) < 1 for all 13 ~ (0, "rr/2), so 
pw(A/X B) > pw(A)pw(B), i.e., there is a correlation between A and B. Now 
let us pick out the two new state vectors: Wc and Wc'.  Let Wc stand in 
direction x, Wc • in direction z. So the conditional probabilities are the 
following: 

Tr(Wc(A /X B ) ) =  1, Tr(WcA) = 1, Tr(Wc B) = 1 

Tr(Wcx(A/X B)) = 0, Tr(Wc• = 0, Tr(Wcla )  = 0 

which satisfy (12)-(15). However, the state vectors Wc and Wc j- do not 
determine the projections C and C J- uniquely. Our two different choices, for 
example, are the following: let Ct = A, i.e., the line x; or let C2 = B, i.e., 
the plane xy. Both choices lead to the same new state vectors Wc and Wc • 

X 
Fig. 2. Correlation with two different common causes. 
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which satisfy the prescr ibed requirements for the c o m m o n  cause. So not even 
our second c o m m o n  cause is unique. 
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